3.4.11 \(\int \frac {x^3}{(a+b x^2)^2 (c+d x^2)^3} \, dx\) [311]

3.4.11.1 Optimal result
3.4.11.2 Mathematica [A] (verified)
3.4.11.3 Rubi [A] (verified)
3.4.11.4 Maple [A] (verified)
3.4.11.5 Fricas [B] (verification not implemented)
3.4.11.6 Sympy [B] (verification not implemented)
3.4.11.7 Maxima [B] (verification not implemented)
3.4.11.8 Giac [B] (verification not implemented)
3.4.11.9 Mupad [B] (verification not implemented)

3.4.11.1 Optimal result

Integrand size = 22, antiderivative size = 142 \[ \int \frac {x^3}{\left (a+b x^2\right )^2 \left (c+d x^2\right )^3} \, dx=\frac {a b}{2 (b c-a d)^3 \left (a+b x^2\right )}+\frac {c}{4 (b c-a d)^2 \left (c+d x^2\right )^2}+\frac {b c+a d}{2 (b c-a d)^3 \left (c+d x^2\right )}+\frac {b (b c+2 a d) \log \left (a+b x^2\right )}{2 (b c-a d)^4}-\frac {b (b c+2 a d) \log \left (c+d x^2\right )}{2 (b c-a d)^4} \]

output
1/2*a*b/(-a*d+b*c)^3/(b*x^2+a)+1/4*c/(-a*d+b*c)^2/(d*x^2+c)^2+1/2*(a*d+b*c 
)/(-a*d+b*c)^3/(d*x^2+c)+1/2*b*(2*a*d+b*c)*ln(b*x^2+a)/(-a*d+b*c)^4-1/2*b* 
(2*a*d+b*c)*ln(d*x^2+c)/(-a*d+b*c)^4
 
3.4.11.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.85 \[ \int \frac {x^3}{\left (a+b x^2\right )^2 \left (c+d x^2\right )^3} \, dx=\frac {\frac {2 a b (b c-a d)}{a+b x^2}+\frac {c (b c-a d)^2}{\left (c+d x^2\right )^2}+\frac {2 (b c-a d) (b c+a d)}{c+d x^2}+2 b (b c+2 a d) \log \left (a+b x^2\right )-2 b (b c+2 a d) \log \left (c+d x^2\right )}{4 (b c-a d)^4} \]

input
Integrate[x^3/((a + b*x^2)^2*(c + d*x^2)^3),x]
 
output
((2*a*b*(b*c - a*d))/(a + b*x^2) + (c*(b*c - a*d)^2)/(c + d*x^2)^2 + (2*(b 
*c - a*d)*(b*c + a*d))/(c + d*x^2) + 2*b*(b*c + 2*a*d)*Log[a + b*x^2] - 2* 
b*(b*c + 2*a*d)*Log[c + d*x^2])/(4*(b*c - a*d)^4)
 
3.4.11.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.95, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {354, 86, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\left (a+b x^2\right )^2 \left (c+d x^2\right )^3} \, dx\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {1}{2} \int \frac {x^2}{\left (b x^2+a\right )^2 \left (d x^2+c\right )^3}dx^2\)

\(\Big \downarrow \) 86

\(\displaystyle \frac {1}{2} \int \left (\frac {(b c+2 a d) b^2}{(b c-a d)^4 \left (b x^2+a\right )}-\frac {a b^2}{(b c-a d)^3 \left (b x^2+a\right )^2}-\frac {d (b c+2 a d) b}{(b c-a d)^4 \left (d x^2+c\right )}-\frac {d (b c+a d)}{(b c-a d)^3 \left (d x^2+c\right )^2}-\frac {c d}{(b c-a d)^2 \left (d x^2+c\right )^3}\right )dx^2\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \left (\frac {a b}{\left (a+b x^2\right ) (b c-a d)^3}+\frac {a d+b c}{\left (c+d x^2\right ) (b c-a d)^3}+\frac {c}{2 \left (c+d x^2\right )^2 (b c-a d)^2}+\frac {b (2 a d+b c) \log \left (a+b x^2\right )}{(b c-a d)^4}-\frac {b (2 a d+b c) \log \left (c+d x^2\right )}{(b c-a d)^4}\right )\)

input
Int[x^3/((a + b*x^2)^2*(c + d*x^2)^3),x]
 
output
((a*b)/((b*c - a*d)^3*(a + b*x^2)) + c/(2*(b*c - a*d)^2*(c + d*x^2)^2) + ( 
b*c + a*d)/((b*c - a*d)^3*(c + d*x^2)) + (b*(b*c + 2*a*d)*Log[a + b*x^2])/ 
(b*c - a*d)^4 - (b*(b*c + 2*a*d)*Log[c + d*x^2])/(b*c - a*d)^4)/2
 

3.4.11.3.1 Defintions of rubi rules used

rule 86
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_ 
.), x_] :> Int[ExpandIntegrand[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; 
 FreeQ[{a, b, c, d, e, f, n}, x] && ((ILtQ[n, 0] && ILtQ[p, 0]) || EqQ[p, 1 
] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p 
+ 1, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.4.11.4 Maple [A] (verified)

Time = 2.78 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.15

method result size
default \(\frac {b^{2} \left (\frac {\left (2 a d +b c \right ) \ln \left (b \,x^{2}+a \right )}{b}-\frac {\left (a d -b c \right ) a}{b \left (b \,x^{2}+a \right )}\right )}{2 \left (a d -b c \right )^{4}}+\frac {d \left (\frac {c \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right )}{2 d \left (d \,x^{2}+c \right )^{2}}-\frac {b \left (2 a d +b c \right ) \ln \left (d \,x^{2}+c \right )}{d}-\frac {a^{2} d^{2}-b^{2} c^{2}}{d \left (d \,x^{2}+c \right )}\right )}{2 \left (a d -b c \right )^{4}}\) \(163\)
norman \(\frac {\frac {\left (-2 a \,b^{2} d^{3}-b^{3} c \,d^{2}\right ) x^{4}}{2 d b \left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right )}+\frac {a c \left (-a b \,d^{3}-5 b^{2} c \,d^{2}\right )}{4 d^{2} b \left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right )}+\frac {\left (2 a d +b c \right ) \left (-a b \,d^{3}-3 b^{2} c \,d^{2}\right ) x^{2}}{4 d^{2} b \left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right )}}{\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )^{2}}+\frac {b \left (2 a d +b c \right ) \ln \left (b \,x^{2}+a \right )}{2 a^{4} d^{4}-8 a^{3} b c \,d^{3}+12 a^{2} b^{2} c^{2} d^{2}-8 a \,b^{3} c^{3} d +2 b^{4} c^{4}}-\frac {b \left (2 a d +b c \right ) \ln \left (d \,x^{2}+c \right )}{2 \left (a^{4} d^{4}-4 a^{3} b c \,d^{3}+6 a^{2} b^{2} c^{2} d^{2}-4 a \,b^{3} c^{3} d +b^{4} c^{4}\right )}\) \(369\)
risch \(\frac {-\frac {b d \left (2 a d +b c \right ) x^{4}}{2 \left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right )}-\frac {\left (a d +3 b c \right ) \left (2 a d +b c \right ) x^{2}}{4 \left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right )}-\frac {a c \left (a d +5 b c \right )}{4 \left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right )}}{\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )^{2}}-\frac {b \ln \left (-d \,x^{2}-c \right ) a d}{a^{4} d^{4}-4 a^{3} b c \,d^{3}+6 a^{2} b^{2} c^{2} d^{2}-4 a \,b^{3} c^{3} d +b^{4} c^{4}}-\frac {b^{2} \ln \left (-d \,x^{2}-c \right ) c}{2 \left (a^{4} d^{4}-4 a^{3} b c \,d^{3}+6 a^{2} b^{2} c^{2} d^{2}-4 a \,b^{3} c^{3} d +b^{4} c^{4}\right )}+\frac {b \ln \left (b \,x^{2}+a \right ) a d}{a^{4} d^{4}-4 a^{3} b c \,d^{3}+6 a^{2} b^{2} c^{2} d^{2}-4 a \,b^{3} c^{3} d +b^{4} c^{4}}+\frac {b^{2} \ln \left (b \,x^{2}+a \right ) c}{2 a^{4} d^{4}-8 a^{3} b c \,d^{3}+12 a^{2} b^{2} c^{2} d^{2}-8 a \,b^{3} c^{3} d +2 b^{4} c^{4}}\) \(447\)
parallelrisch \(\frac {-a^{3} b c \,d^{4}-4 a^{2} b^{2} c^{2} d^{3}+5 a \,b^{3} c^{3} d^{2}+10 \ln \left (b \,x^{2}+a \right ) x^{4} a \,b^{3} c \,d^{4}-10 \ln \left (d \,x^{2}+c \right ) x^{4} a \,b^{3} c \,d^{4}+8 \ln \left (b \,x^{2}+a \right ) x^{2} a^{2} b^{2} c \,d^{4}+8 \ln \left (b \,x^{2}+a \right ) x^{2} a \,b^{3} c^{2} d^{3}-8 \ln \left (d \,x^{2}+c \right ) x^{2} a^{2} b^{2} c \,d^{4}-8 \ln \left (d \,x^{2}+c \right ) x^{2} a \,b^{3} c^{2} d^{3}-4 x^{4} a^{2} b^{2} d^{5}+2 x^{4} b^{4} c^{2} d^{3}-2 x^{2} a^{3} b \,d^{5}+3 x^{2} b^{4} c^{3} d^{2}+4 \ln \left (b \,x^{2}+a \right ) a^{2} b^{2} c^{2} d^{3}+2 \ln \left (b \,x^{2}+a \right ) a \,b^{3} c^{3} d^{2}-4 \ln \left (d \,x^{2}+c \right ) a^{2} b^{2} c^{2} d^{3}-2 \ln \left (d \,x^{2}+c \right ) a \,b^{3} c^{3} d^{2}+2 x^{4} a \,b^{3} c \,d^{4}-5 x^{2} a^{2} b^{2} c \,d^{4}+4 x^{2} a \,b^{3} c^{2} d^{3}+4 \ln \left (b \,x^{2}+a \right ) x^{6} a \,b^{3} d^{5}+2 \ln \left (b \,x^{2}+a \right ) x^{6} b^{4} c \,d^{4}-4 \ln \left (d \,x^{2}+c \right ) x^{6} a \,b^{3} d^{5}-2 \ln \left (d \,x^{2}+c \right ) x^{6} b^{4} c \,d^{4}+4 \ln \left (b \,x^{2}+a \right ) x^{4} a^{2} b^{2} d^{5}+4 \ln \left (b \,x^{2}+a \right ) x^{4} b^{4} c^{2} d^{3}-4 \ln \left (d \,x^{2}+c \right ) x^{4} a^{2} b^{2} d^{5}-4 \ln \left (d \,x^{2}+c \right ) x^{4} b^{4} c^{2} d^{3}+2 \ln \left (b \,x^{2}+a \right ) x^{2} b^{4} c^{3} d^{2}-2 \ln \left (d \,x^{2}+c \right ) x^{2} b^{4} c^{3} d^{2}}{4 \left (a^{4} d^{4}-4 a^{3} b c \,d^{3}+6 a^{2} b^{2} c^{2} d^{2}-4 a \,b^{3} c^{3} d +b^{4} c^{4}\right ) \left (d \,x^{2}+c \right )^{2} \left (b \,x^{2}+a \right ) b \,d^{2}}\) \(642\)

input
int(x^3/(b*x^2+a)^2/(d*x^2+c)^3,x,method=_RETURNVERBOSE)
 
output
1/2*b^2/(a*d-b*c)^4*((2*a*d+b*c)/b*ln(b*x^2+a)-(a*d-b*c)*a/b/(b*x^2+a))+1/ 
2*d/(a*d-b*c)^4*(1/2*c*(a^2*d^2-2*a*b*c*d+b^2*c^2)/d/(d*x^2+c)^2-b*(2*a*d+ 
b*c)/d*ln(d*x^2+c)-(a^2*d^2-b^2*c^2)/d/(d*x^2+c))
 
3.4.11.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 598 vs. \(2 (132) = 264\).

Time = 0.26 (sec) , antiderivative size = 598, normalized size of antiderivative = 4.21 \[ \int \frac {x^3}{\left (a+b x^2\right )^2 \left (c+d x^2\right )^3} \, dx=\frac {5 \, a b^{2} c^{3} - 4 \, a^{2} b c^{2} d - a^{3} c d^{2} + 2 \, {\left (b^{3} c^{2} d + a b^{2} c d^{2} - 2 \, a^{2} b d^{3}\right )} x^{4} + {\left (3 \, b^{3} c^{3} + 4 \, a b^{2} c^{2} d - 5 \, a^{2} b c d^{2} - 2 \, a^{3} d^{3}\right )} x^{2} + 2 \, {\left ({\left (b^{3} c d^{2} + 2 \, a b^{2} d^{3}\right )} x^{6} + a b^{2} c^{3} + 2 \, a^{2} b c^{2} d + {\left (2 \, b^{3} c^{2} d + 5 \, a b^{2} c d^{2} + 2 \, a^{2} b d^{3}\right )} x^{4} + {\left (b^{3} c^{3} + 4 \, a b^{2} c^{2} d + 4 \, a^{2} b c d^{2}\right )} x^{2}\right )} \log \left (b x^{2} + a\right ) - 2 \, {\left ({\left (b^{3} c d^{2} + 2 \, a b^{2} d^{3}\right )} x^{6} + a b^{2} c^{3} + 2 \, a^{2} b c^{2} d + {\left (2 \, b^{3} c^{2} d + 5 \, a b^{2} c d^{2} + 2 \, a^{2} b d^{3}\right )} x^{4} + {\left (b^{3} c^{3} + 4 \, a b^{2} c^{2} d + 4 \, a^{2} b c d^{2}\right )} x^{2}\right )} \log \left (d x^{2} + c\right )}{4 \, {\left (a b^{4} c^{6} - 4 \, a^{2} b^{3} c^{5} d + 6 \, a^{3} b^{2} c^{4} d^{2} - 4 \, a^{4} b c^{3} d^{3} + a^{5} c^{2} d^{4} + {\left (b^{5} c^{4} d^{2} - 4 \, a b^{4} c^{3} d^{3} + 6 \, a^{2} b^{3} c^{2} d^{4} - 4 \, a^{3} b^{2} c d^{5} + a^{4} b d^{6}\right )} x^{6} + {\left (2 \, b^{5} c^{5} d - 7 \, a b^{4} c^{4} d^{2} + 8 \, a^{2} b^{3} c^{3} d^{3} - 2 \, a^{3} b^{2} c^{2} d^{4} - 2 \, a^{4} b c d^{5} + a^{5} d^{6}\right )} x^{4} + {\left (b^{5} c^{6} - 2 \, a b^{4} c^{5} d - 2 \, a^{2} b^{3} c^{4} d^{2} + 8 \, a^{3} b^{2} c^{3} d^{3} - 7 \, a^{4} b c^{2} d^{4} + 2 \, a^{5} c d^{5}\right )} x^{2}\right )}} \]

input
integrate(x^3/(b*x^2+a)^2/(d*x^2+c)^3,x, algorithm="fricas")
 
output
1/4*(5*a*b^2*c^3 - 4*a^2*b*c^2*d - a^3*c*d^2 + 2*(b^3*c^2*d + a*b^2*c*d^2 
- 2*a^2*b*d^3)*x^4 + (3*b^3*c^3 + 4*a*b^2*c^2*d - 5*a^2*b*c*d^2 - 2*a^3*d^ 
3)*x^2 + 2*((b^3*c*d^2 + 2*a*b^2*d^3)*x^6 + a*b^2*c^3 + 2*a^2*b*c^2*d + (2 
*b^3*c^2*d + 5*a*b^2*c*d^2 + 2*a^2*b*d^3)*x^4 + (b^3*c^3 + 4*a*b^2*c^2*d + 
 4*a^2*b*c*d^2)*x^2)*log(b*x^2 + a) - 2*((b^3*c*d^2 + 2*a*b^2*d^3)*x^6 + a 
*b^2*c^3 + 2*a^2*b*c^2*d + (2*b^3*c^2*d + 5*a*b^2*c*d^2 + 2*a^2*b*d^3)*x^4 
 + (b^3*c^3 + 4*a*b^2*c^2*d + 4*a^2*b*c*d^2)*x^2)*log(d*x^2 + c))/(a*b^4*c 
^6 - 4*a^2*b^3*c^5*d + 6*a^3*b^2*c^4*d^2 - 4*a^4*b*c^3*d^3 + a^5*c^2*d^4 + 
 (b^5*c^4*d^2 - 4*a*b^4*c^3*d^3 + 6*a^2*b^3*c^2*d^4 - 4*a^3*b^2*c*d^5 + a^ 
4*b*d^6)*x^6 + (2*b^5*c^5*d - 7*a*b^4*c^4*d^2 + 8*a^2*b^3*c^3*d^3 - 2*a^3* 
b^2*c^2*d^4 - 2*a^4*b*c*d^5 + a^5*d^6)*x^4 + (b^5*c^6 - 2*a*b^4*c^5*d - 2* 
a^2*b^3*c^4*d^2 + 8*a^3*b^2*c^3*d^3 - 7*a^4*b*c^2*d^4 + 2*a^5*c*d^5)*x^2)
 
3.4.11.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 784 vs. \(2 (122) = 244\).

Time = 29.00 (sec) , antiderivative size = 784, normalized size of antiderivative = 5.52 \[ \int \frac {x^3}{\left (a+b x^2\right )^2 \left (c+d x^2\right )^3} \, dx=- \frac {b \left (2 a d + b c\right ) \log {\left (x^{2} + \frac {- \frac {a^{5} b d^{5} \cdot \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} + \frac {5 a^{4} b^{2} c d^{4} \cdot \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} - \frac {10 a^{3} b^{3} c^{2} d^{3} \cdot \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} + \frac {10 a^{2} b^{4} c^{3} d^{2} \cdot \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} + 2 a^{2} b d^{2} - \frac {5 a b^{5} c^{4} d \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} + 3 a b^{2} c d + \frac {b^{6} c^{5} \cdot \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} + b^{3} c^{2}}{4 a b^{2} d^{2} + 2 b^{3} c d} \right )}}{2 \left (a d - b c\right )^{4}} + \frac {b \left (2 a d + b c\right ) \log {\left (x^{2} + \frac {\frac {a^{5} b d^{5} \cdot \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} - \frac {5 a^{4} b^{2} c d^{4} \cdot \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} + \frac {10 a^{3} b^{3} c^{2} d^{3} \cdot \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} - \frac {10 a^{2} b^{4} c^{3} d^{2} \cdot \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} + 2 a^{2} b d^{2} + \frac {5 a b^{5} c^{4} d \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} + 3 a b^{2} c d - \frac {b^{6} c^{5} \cdot \left (2 a d + b c\right )}{\left (a d - b c\right )^{4}} + b^{3} c^{2}}{4 a b^{2} d^{2} + 2 b^{3} c d} \right )}}{2 \left (a d - b c\right )^{4}} + \frac {- a^{2} c d - 5 a b c^{2} + x^{4} \left (- 4 a b d^{2} - 2 b^{2} c d\right ) + x^{2} \left (- 2 a^{2} d^{2} - 7 a b c d - 3 b^{2} c^{2}\right )}{4 a^{4} c^{2} d^{3} - 12 a^{3} b c^{3} d^{2} + 12 a^{2} b^{2} c^{4} d - 4 a b^{3} c^{5} + x^{6} \cdot \left (4 a^{3} b d^{5} - 12 a^{2} b^{2} c d^{4} + 12 a b^{3} c^{2} d^{3} - 4 b^{4} c^{3} d^{2}\right ) + x^{4} \cdot \left (4 a^{4} d^{5} - 4 a^{3} b c d^{4} - 12 a^{2} b^{2} c^{2} d^{3} + 20 a b^{3} c^{3} d^{2} - 8 b^{4} c^{4} d\right ) + x^{2} \cdot \left (8 a^{4} c d^{4} - 20 a^{3} b c^{2} d^{3} + 12 a^{2} b^{2} c^{3} d^{2} + 4 a b^{3} c^{4} d - 4 b^{4} c^{5}\right )} \]

input
integrate(x**3/(b*x**2+a)**2/(d*x**2+c)**3,x)
 
output
-b*(2*a*d + b*c)*log(x**2 + (-a**5*b*d**5*(2*a*d + b*c)/(a*d - b*c)**4 + 5 
*a**4*b**2*c*d**4*(2*a*d + b*c)/(a*d - b*c)**4 - 10*a**3*b**3*c**2*d**3*(2 
*a*d + b*c)/(a*d - b*c)**4 + 10*a**2*b**4*c**3*d**2*(2*a*d + b*c)/(a*d - b 
*c)**4 + 2*a**2*b*d**2 - 5*a*b**5*c**4*d*(2*a*d + b*c)/(a*d - b*c)**4 + 3* 
a*b**2*c*d + b**6*c**5*(2*a*d + b*c)/(a*d - b*c)**4 + b**3*c**2)/(4*a*b**2 
*d**2 + 2*b**3*c*d))/(2*(a*d - b*c)**4) + b*(2*a*d + b*c)*log(x**2 + (a**5 
*b*d**5*(2*a*d + b*c)/(a*d - b*c)**4 - 5*a**4*b**2*c*d**4*(2*a*d + b*c)/(a 
*d - b*c)**4 + 10*a**3*b**3*c**2*d**3*(2*a*d + b*c)/(a*d - b*c)**4 - 10*a* 
*2*b**4*c**3*d**2*(2*a*d + b*c)/(a*d - b*c)**4 + 2*a**2*b*d**2 + 5*a*b**5* 
c**4*d*(2*a*d + b*c)/(a*d - b*c)**4 + 3*a*b**2*c*d - b**6*c**5*(2*a*d + b* 
c)/(a*d - b*c)**4 + b**3*c**2)/(4*a*b**2*d**2 + 2*b**3*c*d))/(2*(a*d - b*c 
)**4) + (-a**2*c*d - 5*a*b*c**2 + x**4*(-4*a*b*d**2 - 2*b**2*c*d) + x**2*( 
-2*a**2*d**2 - 7*a*b*c*d - 3*b**2*c**2))/(4*a**4*c**2*d**3 - 12*a**3*b*c** 
3*d**2 + 12*a**2*b**2*c**4*d - 4*a*b**3*c**5 + x**6*(4*a**3*b*d**5 - 12*a* 
*2*b**2*c*d**4 + 12*a*b**3*c**2*d**3 - 4*b**4*c**3*d**2) + x**4*(4*a**4*d* 
*5 - 4*a**3*b*c*d**4 - 12*a**2*b**2*c**2*d**3 + 20*a*b**3*c**3*d**2 - 8*b* 
*4*c**4*d) + x**2*(8*a**4*c*d**4 - 20*a**3*b*c**2*d**3 + 12*a**2*b**2*c**3 
*d**2 + 4*a*b**3*c**4*d - 4*b**4*c**5))
 
3.4.11.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 415 vs. \(2 (132) = 264\).

Time = 0.22 (sec) , antiderivative size = 415, normalized size of antiderivative = 2.92 \[ \int \frac {x^3}{\left (a+b x^2\right )^2 \left (c+d x^2\right )^3} \, dx=\frac {{\left (b^{2} c + 2 \, a b d\right )} \log \left (b x^{2} + a\right )}{2 \, {\left (b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}\right )}} - \frac {{\left (b^{2} c + 2 \, a b d\right )} \log \left (d x^{2} + c\right )}{2 \, {\left (b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}\right )}} + \frac {2 \, {\left (b^{2} c d + 2 \, a b d^{2}\right )} x^{4} + 5 \, a b c^{2} + a^{2} c d + {\left (3 \, b^{2} c^{2} + 7 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{2}}{4 \, {\left (a b^{3} c^{5} - 3 \, a^{2} b^{2} c^{4} d + 3 \, a^{3} b c^{3} d^{2} - a^{4} c^{2} d^{3} + {\left (b^{4} c^{3} d^{2} - 3 \, a b^{3} c^{2} d^{3} + 3 \, a^{2} b^{2} c d^{4} - a^{3} b d^{5}\right )} x^{6} + {\left (2 \, b^{4} c^{4} d - 5 \, a b^{3} c^{3} d^{2} + 3 \, a^{2} b^{2} c^{2} d^{3} + a^{3} b c d^{4} - a^{4} d^{5}\right )} x^{4} + {\left (b^{4} c^{5} - a b^{3} c^{4} d - 3 \, a^{2} b^{2} c^{3} d^{2} + 5 \, a^{3} b c^{2} d^{3} - 2 \, a^{4} c d^{4}\right )} x^{2}\right )}} \]

input
integrate(x^3/(b*x^2+a)^2/(d*x^2+c)^3,x, algorithm="maxima")
 
output
1/2*(b^2*c + 2*a*b*d)*log(b*x^2 + a)/(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2* 
c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4) - 1/2*(b^2*c + 2*a*b*d)*log(d*x^2 + c)/ 
(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4) + 
1/4*(2*(b^2*c*d + 2*a*b*d^2)*x^4 + 5*a*b*c^2 + a^2*c*d + (3*b^2*c^2 + 7*a* 
b*c*d + 2*a^2*d^2)*x^2)/(a*b^3*c^5 - 3*a^2*b^2*c^4*d + 3*a^3*b*c^3*d^2 - a 
^4*c^2*d^3 + (b^4*c^3*d^2 - 3*a*b^3*c^2*d^3 + 3*a^2*b^2*c*d^4 - a^3*b*d^5) 
*x^6 + (2*b^4*c^4*d - 5*a*b^3*c^3*d^2 + 3*a^2*b^2*c^2*d^3 + a^3*b*c*d^4 - 
a^4*d^5)*x^4 + (b^4*c^5 - a*b^3*c^4*d - 3*a^2*b^2*c^3*d^2 + 5*a^3*b*c^2*d^ 
3 - 2*a^4*c*d^4)*x^2)
 
3.4.11.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 267 vs. \(2 (132) = 264\).

Time = 0.28 (sec) , antiderivative size = 267, normalized size of antiderivative = 1.88 \[ \int \frac {x^3}{\left (a+b x^2\right )^2 \left (c+d x^2\right )^3} \, dx=\frac {\frac {2 \, a b^{5}}{{\left (b^{6} c^{3} - 3 \, a b^{5} c^{2} d + 3 \, a^{2} b^{4} c d^{2} - a^{3} b^{3} d^{3}\right )} {\left (b x^{2} + a\right )}} - \frac {2 \, {\left (b^{4} c + 2 \, a b^{3} d\right )} \log \left ({\left | \frac {b c}{b x^{2} + a} - \frac {a d}{b x^{2} + a} + d \right |}\right )}{b^{5} c^{4} - 4 \, a b^{4} c^{3} d + 6 \, a^{2} b^{3} c^{2} d^{2} - 4 \, a^{3} b^{2} c d^{3} + a^{4} b d^{4}} - \frac {3 \, b^{3} c d^{2} + 2 \, a b^{2} d^{3} + \frac {2 \, {\left (2 \, b^{5} c^{2} d - a b^{4} c d^{2} - a^{2} b^{3} d^{3}\right )}}{{\left (b x^{2} + a\right )} b}}{{\left (b c - a d\right )}^{4} {\left (\frac {b c}{b x^{2} + a} - \frac {a d}{b x^{2} + a} + d\right )}^{2}}}{4 \, b} \]

input
integrate(x^3/(b*x^2+a)^2/(d*x^2+c)^3,x, algorithm="giac")
 
output
1/4*(2*a*b^5/((b^6*c^3 - 3*a*b^5*c^2*d + 3*a^2*b^4*c*d^2 - a^3*b^3*d^3)*(b 
*x^2 + a)) - 2*(b^4*c + 2*a*b^3*d)*log(abs(b*c/(b*x^2 + a) - a*d/(b*x^2 + 
a) + d))/(b^5*c^4 - 4*a*b^4*c^3*d + 6*a^2*b^3*c^2*d^2 - 4*a^3*b^2*c*d^3 + 
a^4*b*d^4) - (3*b^3*c*d^2 + 2*a*b^2*d^3 + 2*(2*b^5*c^2*d - a*b^4*c*d^2 - a 
^2*b^3*d^3)/((b*x^2 + a)*b))/((b*c - a*d)^4*(b*c/(b*x^2 + a) - a*d/(b*x^2 
+ a) + d)^2))/b
 
3.4.11.9 Mupad [B] (verification not implemented)

Time = 5.31 (sec) , antiderivative size = 926, normalized size of antiderivative = 6.52 \[ \int \frac {x^3}{\left (a+b x^2\right )^2 \left (c+d x^2\right )^3} \, dx=\frac {5\,a\,b^2\,c^3-a^3\,c\,d^2-2\,a^3\,d^3\,x^2+3\,b^3\,c^3\,x^2-4\,a^2\,b\,d^3\,x^4+2\,b^3\,c^2\,d\,x^4+a\,b^2\,c^3\,\mathrm {atan}\left (\frac {a\,d\,x^2\,1{}\mathrm {i}-b\,c\,x^2\,1{}\mathrm {i}}{2\,a\,c+a\,d\,x^2+b\,c\,x^2}\right )\,4{}\mathrm {i}-4\,a^2\,b\,c^2\,d+b^3\,c^3\,x^2\,\mathrm {atan}\left (\frac {a\,d\,x^2\,1{}\mathrm {i}-b\,c\,x^2\,1{}\mathrm {i}}{2\,a\,c+a\,d\,x^2+b\,c\,x^2}\right )\,4{}\mathrm {i}+a^2\,b\,d^3\,x^4\,\mathrm {atan}\left (\frac {a\,d\,x^2\,1{}\mathrm {i}-b\,c\,x^2\,1{}\mathrm {i}}{2\,a\,c+a\,d\,x^2+b\,c\,x^2}\right )\,8{}\mathrm {i}+a\,b^2\,d^3\,x^6\,\mathrm {atan}\left (\frac {a\,d\,x^2\,1{}\mathrm {i}-b\,c\,x^2\,1{}\mathrm {i}}{2\,a\,c+a\,d\,x^2+b\,c\,x^2}\right )\,8{}\mathrm {i}+b^3\,c^2\,d\,x^4\,\mathrm {atan}\left (\frac {a\,d\,x^2\,1{}\mathrm {i}-b\,c\,x^2\,1{}\mathrm {i}}{2\,a\,c+a\,d\,x^2+b\,c\,x^2}\right )\,8{}\mathrm {i}+b^3\,c\,d^2\,x^6\,\mathrm {atan}\left (\frac {a\,d\,x^2\,1{}\mathrm {i}-b\,c\,x^2\,1{}\mathrm {i}}{2\,a\,c+a\,d\,x^2+b\,c\,x^2}\right )\,4{}\mathrm {i}+4\,a\,b^2\,c^2\,d\,x^2-5\,a^2\,b\,c\,d^2\,x^2+2\,a\,b^2\,c\,d^2\,x^4+a^2\,b\,c^2\,d\,\mathrm {atan}\left (\frac {a\,d\,x^2\,1{}\mathrm {i}-b\,c\,x^2\,1{}\mathrm {i}}{2\,a\,c+a\,d\,x^2+b\,c\,x^2}\right )\,8{}\mathrm {i}+a\,b^2\,c^2\,d\,x^2\,\mathrm {atan}\left (\frac {a\,d\,x^2\,1{}\mathrm {i}-b\,c\,x^2\,1{}\mathrm {i}}{2\,a\,c+a\,d\,x^2+b\,c\,x^2}\right )\,16{}\mathrm {i}+a^2\,b\,c\,d^2\,x^2\,\mathrm {atan}\left (\frac {a\,d\,x^2\,1{}\mathrm {i}-b\,c\,x^2\,1{}\mathrm {i}}{2\,a\,c+a\,d\,x^2+b\,c\,x^2}\right )\,16{}\mathrm {i}+a\,b^2\,c\,d^2\,x^4\,\mathrm {atan}\left (\frac {a\,d\,x^2\,1{}\mathrm {i}-b\,c\,x^2\,1{}\mathrm {i}}{2\,a\,c+a\,d\,x^2+b\,c\,x^2}\right )\,20{}\mathrm {i}}{4\,a^5\,c^2\,d^4+8\,a^5\,c\,d^5\,x^2+4\,a^5\,d^6\,x^4-16\,a^4\,b\,c^3\,d^3-28\,a^4\,b\,c^2\,d^4\,x^2-8\,a^4\,b\,c\,d^5\,x^4+4\,a^4\,b\,d^6\,x^6+24\,a^3\,b^2\,c^4\,d^2+32\,a^3\,b^2\,c^3\,d^3\,x^2-8\,a^3\,b^2\,c^2\,d^4\,x^4-16\,a^3\,b^2\,c\,d^5\,x^6-16\,a^2\,b^3\,c^5\,d-8\,a^2\,b^3\,c^4\,d^2\,x^2+32\,a^2\,b^3\,c^3\,d^3\,x^4+24\,a^2\,b^3\,c^2\,d^4\,x^6+4\,a\,b^4\,c^6-8\,a\,b^4\,c^5\,d\,x^2-28\,a\,b^4\,c^4\,d^2\,x^4-16\,a\,b^4\,c^3\,d^3\,x^6+4\,b^5\,c^6\,x^2+8\,b^5\,c^5\,d\,x^4+4\,b^5\,c^4\,d^2\,x^6} \]

input
int(x^3/((a + b*x^2)^2*(c + d*x^2)^3),x)
 
output
(5*a*b^2*c^3 - a^3*c*d^2 - 2*a^3*d^3*x^2 + 3*b^3*c^3*x^2 - 4*a^2*b*d^3*x^4 
 + 2*b^3*c^2*d*x^4 + a*b^2*c^3*atan((a*d*x^2*1i - b*c*x^2*1i)/(2*a*c + a*d 
*x^2 + b*c*x^2))*4i - 4*a^2*b*c^2*d + b^3*c^3*x^2*atan((a*d*x^2*1i - b*c*x 
^2*1i)/(2*a*c + a*d*x^2 + b*c*x^2))*4i + a^2*b*d^3*x^4*atan((a*d*x^2*1i - 
b*c*x^2*1i)/(2*a*c + a*d*x^2 + b*c*x^2))*8i + a*b^2*d^3*x^6*atan((a*d*x^2* 
1i - b*c*x^2*1i)/(2*a*c + a*d*x^2 + b*c*x^2))*8i + b^3*c^2*d*x^4*atan((a*d 
*x^2*1i - b*c*x^2*1i)/(2*a*c + a*d*x^2 + b*c*x^2))*8i + b^3*c*d^2*x^6*atan 
((a*d*x^2*1i - b*c*x^2*1i)/(2*a*c + a*d*x^2 + b*c*x^2))*4i + 4*a*b^2*c^2*d 
*x^2 - 5*a^2*b*c*d^2*x^2 + 2*a*b^2*c*d^2*x^4 + a^2*b*c^2*d*atan((a*d*x^2*1 
i - b*c*x^2*1i)/(2*a*c + a*d*x^2 + b*c*x^2))*8i + a*b^2*c^2*d*x^2*atan((a* 
d*x^2*1i - b*c*x^2*1i)/(2*a*c + a*d*x^2 + b*c*x^2))*16i + a^2*b*c*d^2*x^2* 
atan((a*d*x^2*1i - b*c*x^2*1i)/(2*a*c + a*d*x^2 + b*c*x^2))*16i + a*b^2*c* 
d^2*x^4*atan((a*d*x^2*1i - b*c*x^2*1i)/(2*a*c + a*d*x^2 + b*c*x^2))*20i)/( 
4*a*b^4*c^6 + 4*a^5*c^2*d^4 + 4*b^5*c^6*x^2 + 4*a^5*d^6*x^4 - 16*a^2*b^3*c 
^5*d - 16*a^4*b*c^3*d^3 + 4*a^4*b*d^6*x^6 + 8*a^5*c*d^5*x^2 + 8*b^5*c^5*d* 
x^4 + 24*a^3*b^2*c^4*d^2 + 4*b^5*c^4*d^2*x^6 - 8*a^2*b^3*c^4*d^2*x^2 + 32* 
a^3*b^2*c^3*d^3*x^2 + 32*a^2*b^3*c^3*d^3*x^4 - 8*a^3*b^2*c^2*d^4*x^4 + 24* 
a^2*b^3*c^2*d^4*x^6 - 8*a*b^4*c^5*d*x^2 - 8*a^4*b*c*d^5*x^4 - 28*a^4*b*c^2 
*d^4*x^2 - 28*a*b^4*c^4*d^2*x^4 - 16*a*b^4*c^3*d^3*x^6 - 16*a^3*b^2*c*d^5* 
x^6)